Abstract

Co-Zr substituted M-type hexagonal barium ferrites, with chemical formula BaCoxZrxFe12-2xO19 (where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), have been synthesized by double sintering ceramic method. The crystallographic properties, grain morphology and magnetic properties of these ferrites have been investigated by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The XRD patterns confirm the single phase with hexagonal structure of prepared ferrites. The magnetic properties have been investigated as a function of Co and Zr ion composition at an applied field in the range of 20 KOe. These studies indicate that the saturation magnetization (Ms) in the samples increases initially up to the Co-Zr composition of x=0.6 and decreases thereafter. On the other hand, the coercivity (Hc) and Remanent magnetization (Mr) are found to decrease continuously with increasing Co-Zr content. This property is most useful in permanent magnetic recording. The observed results are explained on the basis of site occupation of Co and Zr ions in the samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.