Abstract

The synthesis, crystal structure, and magnetic characterization are reported for three new structurally related iron(III) compounds (NHEt3)[Fe8O5(OH)5(O2PPh2)10] (1), [Fe12 Ca4O10(O2CPh)10(hmp)4] (2), and [Fe12La4O10(OH)4(tbb)24] (3), where hmpH is 2-(hydroxymethyl)pyridine and tbbH is 4-tBu-benzoic acid. 1 was obtained from the reaction of Fe(NO3)3·9H2O, diphenylphosphinic acid (Ph2PO2H), and NEt3 in a 1:4:16 molar ratio in MeCN at 50 °C; 2 was obtained from the reaction of [Fe3O(O2CPh)6(H2O)3](NO3), Ca(NO3)2, and NEt3 in a 1:1:4:2 ratio at 130 °C; and 3 was obtained from the reaction of Fe(NO3)3·9H2O, La(NO3)3·6H2O, 4-tBu-benzoic acid, and NEt3 in a 1:1:4:4 ratio in PhCN at 140 °C. The core of 1 consists of two {Fe4(µ3-O)2}8+ butterfly units stacked on top of each other and bridged by O2− and HO− ions. The cores of 2 and 3 also contain two stacked butterfly units, plus four additional Fe atoms, two at each end, and four M atoms (M = Ca2+ (2); La3+ (3)) on the sides. Variable-temperature (T) and solid-state dc and ac magnetization (M) data collected in the 1.8–300 K range revealed that 1 has an S = 0 ground state, 2 has a χMT value at low T consistent with the central Fe8 in a local S = 0 ground state and the two Fe3+ ions in each end-pair to be non-interacting, whereas 3 has a χMT value at low T consistent with these end-pairs each being ferromagnetically coupled with S = 5 ground states, plus intermolecular ferromagnetic interactions. These conclusions were reached from complementing the experimental studies with the calculation of the various Fe2 pairwise Jij exchange couplings by DFT computations and by using a magnetostructural correlation (MSC) for polynuclear Fe3+/O complexes, as well as a structural analysis of the intermolecular contacts in the crystal packing of 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.