Abstract

The structural and luminescent properties of trivalent europium-doped titanium dioxide films synthesized by the ultrasonic spray pyrolysis technique at several substrate temperatures are reported. These films are nanocrystalline and present a mixture of tetragonal (anatase and rutile) crystal structures of the titania as determined by x-ray diffraction. The rutile crystal structure became predominant as the substrate temperature during deposition was increased. Under UV and electron beam excitation, these coatings showed strong luminescence due to f–f transitions and the dominant transition was the hypersensitive 5D0 → 7F2 red emission of Eu3+. The photo- and cathodoluminescence characteristics of these films were studied as a function of growth parameters such as substrate temperature and europium concentration. Excitation with a wavelength of 396 nm resulted in photoluminescent emission peaks located at 557, 580, 592, 615, 652 and 703 nm, associated with the electronic transitions of the Eu3+ ion. The photoluminescence (PL) intensity as a whole is observed to decrease as the deposition temperature is increased. Also, with increasing doping concentration, a quenching of the PL is observed. The chemical composition and surface morphology characteristics of the films are also reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.