Abstract

GaN layers and Al1−xInxN/AlN/GaN heterostructures have been studied by scanning probe microscopy methods. Threading dislocations (TDs), originating from the GaN (0001) layer grown on sapphire, have been investigated. Using Current-Atomic Force Microscopy (C-AFM) TDs have been found to be highly conductive in both GaN and AlInN, while using semi-contact AFM (phase-imaging mode) indium segregation has been traced at TDs in AlInN/AlN/GaN heterostructures. It has been assessed that In segregation is responsible for high conductivity at dislocations in the examined heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.