Abstract

Nanocrystalline CuO–Cu x Fe 3− x O 4 thin films were developed using a radio-frequency sputtering method followed by a thermal oxidation process. Thin films were deposited applying two very different conditions by varying the argon pressure and the target-to-substrate distance. Structural, microstructural and gas-sensing characteristics were performed using grazing incidence X-ray diffraction (GXRD), Raman spectroscopy, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electrical measurements. Their sensing properties were examined using hydrogen gas in dry synthetic air. The shortest response and recovery times were observed between 280 and 300 °C independently of the deposition conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.