Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons. Studies using various magnetic resonance imaging (MRI) analytical approaches have consistently identified significant precentral abnormalities in ALS, whereas their structural and functional underpinnings remain poorly understood. Using cortical thickness, fractional anisotropy (FA), and effective connectivity, we performed a multimodal MRI study to examine the structural and functional alterations associated with precentral abnormalities in patients with ALS (n=60) compared with healthy controls (n=60). Cortical thickness analysis revealed significant cortical thinning in the right precentral gyrus (PCG), superior frontal gyrus, and superior temporal gyrus in patients with ALS. Tractwise white matter microstructure analyses revealed decreased FA in the tracts connected to the PCG cluster in patients with ALS involving the right corticospinal tract and the middle posterior body of the corpus callosum. Additionally, the cortical thickness of the PCG cluster was found to be positively correlated with FA of the tracts connected to the PCG cluster, suggesting that these two structural features are tightly coupled. Using spectral dynamic causal modelling, effective connectivity analysis among the three regions with cortical thinning revealed decreased self-inhibitory influence in the PCG cluster in patients with ALS, which might be an endophenotypic manifestation of an imbalance in inhibitory and excitatory neurotransmitters in this region. The present data shed new light on the structural and functional underpinnings of precentral abnormalities in ALS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call