Abstract

Reviewed are data on the position of template codons with respect to 18S rRNA and certain proteins on human ribosome obtained using a set of mRNA analogs, oligoribonucleotide derivatives carrying alkylating or photoactivatable groups at different positions. A comparison of data on the template position on the human and Escherichia coliribosomes has revealed both the similarity in the structure of the mRNA-binding site of bacterial and mammalian ribosomes and the peculiarities of the functioning of mammalian (in particular, human) ribosomes. The similarity manifests itself in that the template codons at the A-, P-, and E-sites of bacterial and human ribosomes are surrounded by similar nucleotides (occupying similar positions in the conserved regions of secondary structure) of small subunit rRNA. The template forms a loop whose foot is in proximity to the 530 stem–loop conserved region of rRNA. The specific features of mammalian ribosomes appear to be associated with their lower conformational mobility as compared with bacterial ribosomes, owing to which their interaction with the template involves a lesser number of molecular contacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call