Abstract

Gels combined with honey might generate new possibilities of textures in food development. This work explores the structural and functional properties of gelatin (5 g/100 g), pectin (1 g/100 g), and carrageenan (1 g/100 g) gels with different content of honey (0-50 g/100 g). Honey decreased the transparency of gels and made them more yellow-greenish; all of them were firm and uniform, especially at the highest honey content. The water holding capacity increased (63.30-97.90 g/100 g) and moisture content, water activity (0.987-0.884) and syneresis (36.03-1.30 g/100 g) decreased with the addition of honey. This ingredient modified mainly the textural parameters of gelatin (Hardness: 0.82-1.35 N) and carrageenan gels (Hardness: 2.46-2.81 N), whereas only the adhesiveness and the liquid like-behavior were increased in the pectin gels. Honey increased the solid behavior of gelatin gels (G': 54.64-173.37 Pa) but did not modify the rheological parameters of the carrageenan ones. Honey also had a smoothing effect on the microstructure of gels as observed in the scanning electron microscopy micrographs. This effect was also confirmed by the results of the gray level co-occurrence matrix and fractal model's analysis (fractal dimension: 1.797-1.527; lacunarity: 1.687-0.322). The principal component and cluster analysis classified samples by the hydrocolloid used, except the gelatin gel with the highest content of honey, which was differentiated as a separate group. Honey modified the texture, rheology, and microstructure of gels indicating that it is possible to generate new products to be used in other food matrices as texturizers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call