Abstract

The thyrotropin-releasing hormone (TRH) receptor (TRHR) is widely distributed throughout the central and peripheral nervous systems. In addition to its role in controlling the synthesis and secretion of thyroid-stimulating hormone and prolactin from the anterior pituitary, TRH is believed to act as a neurotransmitter as well as a neuromodulator. We have isolated genomic lambda and P1-derived artificial chromosome clones encoding the human TRHR. The gene was found to be 35 kb with three exons and two introns. A 541-bp intron 1 (-629 to -89 relative to the translation start site) is conserved between human and mouse. A large intron 2 of 31 kb disrupts the open reading frame (starting in position +790) in the sequence encoding the supposed junction between the third intracellular loop and the putative sixth transmembrane domain. A similar intron was found in chimpanzee and sheep but not in rat and mouse. Promoter analysis of upstream regions demonstrated cell type-specific reporter activation, and sequencing of 2.5 kb of the promoter revealed putative cis-acting regulatory elements for several transcription factors that may contribute to the regulation of the TRHR gene expression. Functional analysis of potential response elements for the anterior pituitary-specific transcription factor Pit-1 revealed cell type-specific binding that was competed out with a Pit-1 response element from the GH gene promoter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.