Abstract
Plant-based proteins obtained from agricultural by-products have garnered growing interest in response to consumer awareness of health and environmental issues. This study aimed to improve the functionalities of the proteins recovered from black soybean Aquasoya (PBSA) by modifying their structure via ultrasonication. PBSA was ultrasonicated with a frequency of 40kHz at 350W for different time periods (0, 20, 40, and 60min), and its structural characteristics, physicochemical properties, and functional properties were investigated. Ultrasonication left the primary structure intact but altered the secondary and tertiary structures of the PBSA; α-helix and β-sheet contents decreased, random coil contents increased, and buried non-polar amino acid residues were exposed. Moreover, ultrasound promoted an increase in free sulfhydryl content and a reduction in particle size. Consequently, functional properties, such as solubility, emulsion stability, and foaming performance were improved by modifying the structure and physicochemical properties of PBSA. This work demonstrates the potential of ultrasound, which is favorable for modifying the spatial conformation and related functionalities of proteins, thus meeting the needs of manufacturers to use function-enhanced proteins as food additives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.