Abstract
Ryanodine receptor type 1 (RyR1) releases Ca2+ ions from the sarcoplasmic reticulum of skeletal muscle cells to initiate muscle contraction. Multiple endogenous and exogenous effectors regulate RyR1, such as ATP, Ca2+, caffeine (Caf), and ryanodine. Cryo-EM identified binding sites for the three coactivators Ca2+, ATP, and Caf. However, the mechanism of coregulation and synergy between these activators remains to be determined. Here, we used [3H]ryanodine ligand-binding assays and molecular dynamics simulations to test the hypothesis that both the ATP- and Caf-binding sites communicate with the Ca2+-binding site to sensitize RyR1 to Ca2+. We report that either phosphomethylphosphonic acid adenylate ester (AMPPCP), a nonhydrolyzable ATP analog, or Caf can activate RyR1 in the absence or the presence of Ca2+. However, enhanced RyR1 activation occurred in the presence of Ca2+, AMPPCP, and Caf. In the absence of Ca2+, Na+ inhibited [3H]ryanodine binding without impairing RyR1 activation by AMPPCP and Caf. Computational analysis suggested that Ca2+-, ATP-, and Caf-binding sites modulate RyR1 protein stability through interactions with the carboxyterminal domain and other domains in the activation core. In the presence of ATP and Caf but the absence of Ca2+, Na+ is predicted to inhibit RyR1 by interacting with the Ca2+-binding site. Our data suggested that ATP and Caf binding affected the conformation of the Ca2+-binding site, and conversely, Ca2+ binding affected the conformation of the ATP- and Caf-binding sites. We conclude that Ca2+, ATP, and Caf regulate RyR1 through a network of allosteric interactions involving the Ca2+-, ATP-, and Caf-binding sites.
Highlights
Ryanodine receptors (RyRs) release Ca2+ ions from the sarcoplasmic reticulum (SR), an intracellular Ca2+-storing compartment, to initiate muscle contraction [1,2,3]
Exposure of skeletal muscle ryanodine receptor type 1 (RyR1) missense mutations associated with malignant hyperthermia (MH) to Caf results in the release of large quantities of Ca2+ from the SR, which causes a rapid rise in body temperature and severe muscle contractions
We report that Caf or AMPPCP activated RyR1 in the absence and presence of Ca2+, and an amplified RyR1 activation is evident in the presence of AMPPCP and Caf (AMPPCP/Caf)
Summary
Structural and functional interactions between the Ca2+-, ATP-, and caffeine-binding sites of skeletal muscle ryanodine receptor (RyR1). Gerhard Meissner From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.