Abstract
Wilson disease is an autosomal recessive disorder of copper metabolism. The gene for this disorder has been cloned and identified to encode a copper-transporting ATPase (ATP7B), a member of a large family of cation transporters, the P-type ATPases. In addition to the core elements common to all P-type ATPases, the Wilson copper-transporting ATPase has a large cytoplasmic N-terminus comprised six heavy metal associated (HMA) domains, each of which contains the copper-binding sequence motif GMT/HCXXC. Extensive studies addressing the functional, regulatory, and structural aspects of heavy metal transport by heavy metal transporters in general, have offered great insights into copper transport by Wilson copper-transporting ATPase. The findings from these studies have been used together with homology modeling of the Wilson disease copper-transporting ATPases based on the X-ray structure of the sarcoplasmic reticulum (SR) calcium-ATPase, to present a hypothetical model of the mechanism of copper transport by copper-transporting ATPases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.