Abstract

The diversity of cellular actin functions is attained by the activation of actin nucleator complexes, which initiate the polymerization of actin monomers into a helical double-stranded filament at defined subcellular compartments. Next to actin functions at the cell membrane, including different forms of membrane protrusions and invaginations, actin dynamics at intracellular membranes has recently become a research focus. Experiments addressing the vesicle-associated Spir WH2 domain containing actin nucleators have provided novel mechanistic insights into the function of actin dynamics at intracellular membranes. Spir proteins are targeted by a modified FYVE zinc finger motif toward endosomal and vesicle membranes, where they interact and cooperate with the distinct nucleators of the FMN subfamily of formins in the nucleation of actin filaments. The function of the Spir/formin actin nucleator complex is closely related to the Rab11 small G protein, which is a key regulator of recycling and exocytic transport processes. Together with the actin motor protein and Rab11 effector myosin Vb, Spir/formin nucleated actin filaments mediate actin-dependent vesicle transport processes. Drosophila and mouse genetic studies as well as cell biology experiments point toward an important role of the Spir/formin complex in oocyte maturation and in the structure and signaling of the nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.