Abstract

V-ATPase is a multi-subunit membrane protein complex, it translocates protons across biological membranes, generating electrical and pH gradients which are used for varieties of cellular processes. V-ATPase is composed of two distinct sub-complexes: a membrane bound V 0 sub-complex, composed of 6 different subunits, which is responsible for proton transport and a soluble cytosolic facing V 1 sub-complex, composed of 8 different subunits which hydrolyse ATP. The two sub-complexes are held together via a flexible stator. One of the main features of eukaryotic V-ATPase is its ability to reversibly dissociate to its sub-complexes in response to changing cellular conditions, which arrest both proton translocation and ATP hydrolysis, suggesting a regulation function. Subunit C (vma5p in yeast) was shown by several biochemical, genetic and recent structural data to function as a flexible stator holding the two sectors of the complex together and regulating the reversible association/dissociation of the complex, partly via association with F-actin filaments. Structural features of subunit C that allow smooth energy conversion and interaction with actin and nucleotides are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call