Abstract

Choroid plexuses (CPs) play pivotal roles in many processes that establish, survey, and maintain the biochemical and cellular status of the central nervous system (CNS). Changes in the anatomy and physiology of CPs have been linked to several CNS diseases. However, CP structure and function are not definitely known. Here, we report structural and functional features of choroid epithelium from buffalo brain never described before. Mixed with common epithelial cells, two novel cell types were identified by scanning and transmission electron microscopies. The first peculiar cells showed a globular apical portion projecting into the ventricular cavities, and a basal peduncle in direct contact with blood capillaries underlying the epithelium. The second type of cells resulted to be formed by a globular body from which depart numerous processes; these cells, localized deeply in the choroid epithelium, strictly contact neighboring epithelial cells. No synaptic contacts were detected between these cell populations and common epithelial cells. To gain some insight into the functional properties of choroid cells, NADPH diaphorase (NADPHd) and neuronal nitric oxide synthase (nNOS) activities were evaluated. Of interest, whereas a strong NADPHd activity was detected in all cell types of choroid epithelium, nNOS was only detected in the first type of peculiar cells. The presence of nNOS in the CPs was confirmed by Western blotting. These results suggest that nitric oxide may serve as a signal for the regulation of CP multiple functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.