Abstract
The structural and functional roles of lysyl and thiol groups in the dimeric (HbI) and tetrameric (HbII) haemoglobins from the mollusc Scapharca inaequivalvis have been assessed. In these haemoglobins a unique mode of assembly (the haem-carrying E and F helices form the intersubunit contact of the dimeric unit) is associated with co-operative oxygen binding. Extensive acylation is accompanied by significant haem oxidation. Modification of one or two lysyl residues per chain (corresponding to approximately 20% of the total residues) does not affect the structural and functional properties of both haemoglobins, in line with the proposal that the intersubunit contacts are rich in hydrophobic residues. The modification of the thiol groups does not influence the state of association in both HbI and HbII, despite the location of the cysteine residue common to all polypeptide chains in the vicinity of the major intersubunit contact. The effect on the functional properties depends on the size of the thiol reagent: p-chloromercuribenzoate and phenylmercuric acetate increase the oxygen affinity about 20-fold, but iodoacetamide and mercuric chloride have no effect. Moreover, electrophoresis experiments indicate that p-chloromercuribenzoate is bound in a co-operative fashion, the degree of co-operativity being much higher in the dimeric HbI. Thus, only in HbII are intermediates containing substoichiometric amounts of p-chloromercuribenzoate formed in significant amounts. Their oxygen binding properties show that reaction of only one thiol group/tetramer suffices to alter the oxygen affinity of the molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.