Abstract

BackgroundAmong the EF-Hand calcium-binding proteins the subgroup of S100 proteins constitute a large family with numerous and diverse functions in calcium-mediated signaling. The evolutionary origin of this family is still uncertain and most studies have examined mammalian family members.ResultsWe have performed an extensive search in several teleost genomes to establish the s100 gene family in fish. We report that the teleost S100 repertoire comprises fourteen different subfamilies which show remarkable similarity across six divergent teleost species. Individual species feature distinctive subsets of thirteen to fourteen genes that result from local gene duplications and gene losses. Eight of the fourteen S100 subfamilies are unique for teleosts, while six are shared with mammalian species and three of those even with cartilaginous fish. Several S100 family members are found in jawless fish already, but none of them are clear orthologs of cartilaginous or bony fish s100 genes. All teleost s100 genes show the expected structural features and are subject to strong negative selection. Many aspects of the genomic arrangement and location of mammalian s100 genes are retained in the teleost s100 gene family, including a completely conserved intron/exon border between the two EF hands. Zebrafish s100 genes exhibit highly specific and characteristic expression patterns, showing both redundancy and divergence in their cellular expression. In larval tissue expression is often restricted to specific cell types like keratinocytes, hair cells, ionocytes and olfactory receptor neurons as demonstrated by in situ hybridization.ConclusionThe origin of the S100 family predates at least the segregation of jawed from jawless fish and some extant family members predate the divergence of bony from cartilaginous fish. Despite a complex pattern of gene gains and losses the total repertoire size is remarkably constant between species. On the expression level the teleost S100 proteins can serve as precise markers for several different cell types. At least some of their functions may be related to those of their counterparts in mammals. Accordingly, our findings provide an excellent basis for future studies of the functions and interaction partners of s100 genes and finally their role in diseases, using the zebrafish as a model organism.

Highlights

  • Among the EF-Hand calcium-binding proteins the subgroup of S100 proteins constitute a large family with numerous and diverse functions in calcium-mediated signaling

  • The origin of the S100 family predates at least the segregation of jawed from jawless fish and some extant family members predate the divergence of bony from cartilaginous fish

  • Despite a complex pattern of gene gains and losses the total repertoire size is remarkably constant between species

Read more

Summary

Introduction

Among the EF-Hand calcium-binding proteins the subgroup of S100 proteins constitute a large family with numerous and diverse functions in calcium-mediated signaling. Until today at least 20 members were described in humans and a growing number in several other mammalian species. They share an average identity of 40–60% on the amino acid level, but key features are more highly conserved. Some family members possess dysfunctional calcium-binding domains, but there is evidence of calcium-independent interactions in this family (for review see [3,4,5,6,7]). Among the interacting partners are other calcium-binding proteins (several members of the annexin family), enzymes (e.g. aldolase A/C), cytoskeletal components (actin, tubulin), cell cycle regulator genes (p53), second messenger-synthesizing enzymes (adenylate and guanylate cyclase) as well as kinases. The expression pattern of the S100 family exhibits a remarkable degree of cell and tissue-specificity, so that many tissues and cell types have their unique protein composition and expression level [11,12,13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call