Abstract

Mnemiopsin 2 from Mnemiopsis leidyi is a calcium-regulated photoprotein which has luminescence properties in the presence of calcium and coelenterazine. All calcium-regulated photoproteins contain EF-hand loops consisting of 12 individual residues in which the 6th position is occupied by Gly. However, the 6th residue in mneniopsin 2 is Glu rather than Gly. Here, we investigated the structural and functional consequences of substitution of Glu by Gly (E50G variant) using site-directed mutagenesis and spectroscopic procedures. It was revealed that the luminescence activity of the variant was about 17 times greater than that of wild-type (WT) photoprotein. In comparison with WT protein, our variant showed higher optimum temperature and calcium sensitivity as well as slower rate of luminescence decay. Homology modeling and sequence analysis with other known photoproteins showed that EF-hand I loop can affect the luminescence activity of E50G variant. Structural studies using circular dichroism and fluorescence spectroscopy revealed that mutation leads to the reduction in secondary structural content and local structural alterations. Finally, it can be concluded that the activity of E50G variant increases as a result of more flexibility that brought about by Gly essential for adopting the correct conformation for functional activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call