Abstract

To better understand TCR discrimination of multiple ligands, we have analyzed the crystal structures of two Hb peptide/I-E(k) complexes that differ by only a single amino acid substitution at the P6 anchor position within the peptide (E73D). Detailed comparison of multiple independently determined structures at 1.9 A resolution reveals that removal of a single buried methylene group can alter a critical portion of the TCR recognition surface. Significant variance was observed in the peptide P5-P8 main chain as well as a rotamer difference at LeuP8, approximately 10 A distal from the substitution. No significant variations were observed in the conformation of the two MHC class II molecules. The ligand alteration results in two peptide/MHC complexes that generate bulk T cell responses that are distinct and essentially nonoverlapping. For the Hb-specific T cell 3.L2, substitution reduces the potency of the ligand 1000-fold. Soluble 3.L2 TCR binds the two peptide/MHC complexes with similar affinity, although with faster kinetics. These results highlight the role of subtle variations in MHC Ag presentation on T cell activation and signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.