Abstract

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive dementia, and amnestic mild cognitive impairment (aMCI) has been defined as a transitional stage between normal aging and AD. Accumulating evidence has shown that altered functional connectivity (FC) and structural connectivity (SC) in the default mode network (DMN) is the prominent hallmarks of AD. However, the relationship between the changes in SC and FC of the DMN is not yet clear. In the present study, we derived the FC and SC matrices of the DMN with functional magnetic resonance imaging (fMRI) and diffusion-weighted imaging (DWI) data and further assessed FC and SC abnormalities within a discovery dataset of 120 participants (39 normal controls, 34 patients with aMCI and 47 patients with AD), as well as a replication dataset of 122 participants (43 normal controls, 37 patients with aMCI and 42 patients with AD). Disrupted SC and FC were found among DMN components (e.g., the posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), and hippocampus) in patients in the aMCI and AD groups in the discovery dataset; most of the disrupted connections were also identified in the replication dataset. More importantly, some SC and FC elements were significantly correlated with the cognitive ability of patients with aMCI and AD. In addition, we found structural-functional decoupling between the PCC and the right hippocampus in patients in the aMCI and AD groups. These findings of the alteration of DMN connectivity in neurodegenerative cohorts deepen our understanding of the pathophysiological mechanisms of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call