Abstract

We have investigated the structural and functional differences between chicken and human cellular fibronectin by comparing the tryptic peptide patterns using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by analyzing the binding properties of isolated trypsin-resistant polypeptide fragments. Although the overall functional organization of chicken and human cellular fibronectins was similar, the tryptic patterns obtained from these two molecules were strikingly different. For example, the tryptic digest of chicken cellular fibronectin contained two unique peptide fragments having molecular sizes of 45 and 70 kilodaltons. The previously unidentified carboxyl-terminal 45-kDa fragment is an intermediate that appears between 15 to 120 s of digestion. The 70-kDa fragment binds to gelatin, to fibrin (with unusually high apparent affinity), to heparin (at low ionic strength), and to fixed Staphylococcus aureus cells; it also contains an acceptor site for factor XIIIa (plasma transglutaminase). These results suggest that the functional domains of chicken and human fibronectins remain constant and that structural variations occur in the protease-susceptible regions of the molecule. The present findings are discussed in terms of the previously existing discrepancies in the literature on fibronectin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.