Abstract

Glial fibrillary acidic protein, GFAP, is an astrocyte-specific member of the family of intermediate filament proteins which are involved in formation of the cytoskeletal structure. We here present a characterization of the zebrafish GFAP gene and corresponding protein. The zebrafish GFAP gene have the same exon-intron organization as the mammalian orthologoue genes. Comparison of the protein with mammalian GFAP shows that the amino acid sequence is highly conserved in the rod and tail domains whereas the head domain has diverged. Zebrafish GFAP exhibits functional characteristics of an intermediate filament protein such as dimerization potential, capacity to assembly into filaments, and cytoskeletal localization. Mutations in human GFAP have been associated with a severe childhood brain disorder called Alexander disease. Interestingly, the mutations affect preferentially amino acid residues of GFAP that are evolutionarily conserved. This indicates that a change of functionally core residues in GFAP is a prerequisite for the disease phenotype to develop and the initial steps in the pathogenesis may thus be modeled in zebrafish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.