Abstract

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is a major corn pest of significant economic importance in the United States. The continuous need to control this corn maize pest and the development of field-evolved resistance toward all existing transgenic maize (Zea mays L.) expressing Bacillus thuringiensis (Bt) insecticidal proteins against WCR has prompted the development of new insect-protected crops expressing distinct structural classes of insecticidal proteins. In this current study, we describe the crystal structure and functional characterization of Mpp75Aa1.1, which represents the first corn rootworm (CRW) active insecticidal protein member of the ETX_MTX2 sub-family of beta-pore forming proteins (β-PFPs), and provides new and effective protection against WCR feeding. The Mpp75Aa1.1 crystal structure was solved at 1.94 Å resolution. The Mpp75Aa1.1 is processed at its carboxyl-terminus by WCR midgut proteases, forms an oligomer, and specifically interacts with putative membrane-associated binding partners on the midgut apical microvilli to cause cellular tissue damage resulting in insect death. Alanine substitution of the surface-exposed amino acids W206, Y212, and G217 within the Mpp75Aa1.1 putative receptor binding domain I demonstrates that at least these three amino acids are required for WCR activity. The distinctive spatial arrangement of these amino acids suggests that they are part of a receptor binding epitope, which may be unique to Mpp75Aa1.1 and not present in other ETX_MTX2 proteins that do not have WCR activity. Overall, this work establishes that Mpp75Aa1.1 shares a mode of action consistent with traditional WCR-active Bt proteins despite significant structural differences.

Highlights

  • The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a significant maize pest causing an annual economic loss exceeding 1 billion dollars in the United States [1]

  • The crystal structure of Mpp75Aa1.1 was solved at 1.94 Å resolution (S1 Table) using the single anomalous dispersion (SAD) heavy atom phasing method from a crystal briefly soaked in samarium acetate

  • We provide insights into the WCR activity of Mpp75Aa1.1 based on sequence, structure, and functional characterization

Read more

Summary

Introduction

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a significant maize pest causing an annual economic loss exceeding 1 billion dollars in the United States [1]. Since 2003, transgenic maize expressing a single (e.g., Cry3Bb1) or dual (e.g., Gpp34Ab1/Tpp35Ab1) Bacillus thuringiensis (Bt) pore-forming proteins with distinct receptor specificity have provided protection against WCR. The Pfam (Protein family) [10] database classification indicates that it is a member of the ETX_MTX2 sub-family of β-PFPs [11,12]. Despite their limited primary amino acid sequence similarity, β-PFPs share a conserved structural core comprised of two pairs of anti-parallel β-strands and a membrane insertion β-hairpin [8]. Structural and functional studies have delineated the receptor binding domains of cytocidal [16] and insecticidal [17,18] proteins

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call