Abstract

The nucleotide sequence of D19, a Dictyostelium gene that encodes a prespore-specific mRNA sequence shows it to encode PsA, the cell surface protein detected by the MUD 1 monoclonal antibody. The predicted sequence of the protein reveals a largely hydrophobic C terminus, with chemical similarity to proteins known to be attached to the plasma membrane via a phosphatidylinositol link. The C-terminal region has direct sequence homology to the contact sites A protein and to the phosphatidylinositol-linked form of a chicken N-CAM, suggesting that it might play a role in cell adhesion. Expression of the D19 gene is known to be induced by cAMP and repressed by adenosine. The accumulation of the D19 mRNA is also repressed by DIF, the putative stalk-specific morphogen, and this effect is mediated at the transcriptional level. The pDd56 and pDd63 genes are induced by DIF, and they are specific markers of prestalk and stalk cells. They encode, respectively, ST310 and ST430, two proteins that were first identified by two-dimensional gel electrophoresis. Both proteins are predominantly composed of a highly conserved, 24-amino acid repeat. The two proteins are localized in the slime sheath of the migratory slug and in the stalk tube and stalk cell wall of the mature culminant, where they presumably function as structural components of the extracellular matrix. We have constructed marked derivatives of the pDd56, pDd63, and D19 genes, and these are correctly regulated after transformation into Dictyostelium cells. Thus we have determined the structure, and elucidated possible functions, for one prespore and two prestalk genes. These sequences should be of value, both as markers of the earliest events in cellular differentiation and in identifying the regulatory sequences controlling cell type-specific gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.