Abstract
The distantly related lentiviruses human immunodeficiency virus type 1 (HIV-1) and visna virus each encode a posttranscriptional regulatory protein, termed Rev, that is critical for expression of the viral structural proteins. We genetically mapped the cis-acting target sequence for visna virus Rev, the visna virus Rev-response element or RRE-V, to a complex 176-nucleotide RNA stem-loop structure that coincides with sequences encoding the N terminus of the transmembrane component of envelope. The computer-predicted structure of the RRE-V was validated by in vitro analysis of structure-specific RNase cleavage patterns. The visna virus Rev protein was shown to interact specifically with the genetically defined RRE-V in vitro but was unable to bind the HIV-1 RRE. Similarly, HIV-1 Rev was also unable to bind the RRE-V specifically. We therefore conclude that the HIV-1 and visna virus Rev proteins, while functionally analogous, nevertheless display distinct RNA sequence specificities. These findings provide a biochemical explanation for the observation that these two viral regulatory proteins are functional only in the homologous viral system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.