Abstract

The single-stranded DNA-binding protein LEF-3 of Autographa californica multinucleocapsid nucleopolyhedrovirus consists of 385 amino acid residues, forms oligomers, and promotes Mg2+-independent unwinding of DNA duplexes and annealing of complementary DNA strands. Partial proteolysis revealed that the DNA-binding domain of LEF-3 is located within a central region (residues 28 to 326) that is relatively resistant to proteolysis. In contrast, the N-terminus (27 residues) and C-terminal portion (59 residues) are not involved in interaction with DNA and are readily accessible to proteolytic digestion. Circular dichroism analyses showed that LEF-3 is a folded protein with an estimated α-helix content of more than 40%, but it is structurally unstable and undergoes unfolding in aqueous solutions at temperatures near 50 °C. Unfolding eliminated the LEF-3 domains that are resistant to proteolysis and randomized the digestion pattern by trypsin. The structural transition was irreversible and was accompanied by the generation of high molecular weight (MW) complexes. The thermal treatment inhibited DNA-binding and unwinding activity of LEF-3 but markedly stimulated its annealing activity. We propose that the shift in LEF-3 activities resulted from the generation of the high MW protein complexes, that specifically stimulate the annealing of complementary DNA strands by providing multiple DNA-binding sites and bringing into close proximity the interacting strands. The unfolded LEF-3 was active in a strand exchange reaction suggesting that it could be involved in the production of recombination intermediates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.