Abstract

The fungal strain Humicola lutea 103 produces a naturally glycosylated Cu/Zn-superoxide dismutase (Cu/ZnSOD) (HLSOD). To improve its yield, the effect of increased concentration of Cu 2+ (from 1 to 750 μg/ml) on growth and enzyme biosynthesis was studied. The primary structure of this fungal enzyme has been determined by Edman degradation of peptide fragments derived from proteolytic digest. A single chain of the protein, consisting of 152 amino acid residues, reveals a very high degree (74–85%) of structural homology in comparison to the amino acid sequences of other fungal Cu/ZnSODs. The difference of the molecular masses of H. lutea Cu/ZnSOD, measured by MALDI-MS (15,935 Da) and calculated by its amino acid sequence (15,716 Da), is attributed to the carbohydrate chain of one mole of N-acetylglucosamine, attached to the N-glycosylation site Asn 23-Glu-Ser. HLSOD protected mice from mortality after experimental influenza A/Aichi/2/68 (H3N2) virus infection. Using the glycosylated HLSOD, the survival rate is increased by 66% (protective index=86.1%) and the survival time prolonged by 5.2 days, similar to the application of ribavarin, while non-glycosylated bovine SOD conferred lower protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.