Abstract

Complex polyketides are characterized by multiple chiral centers harboring hydroxyl and alkyl substituents. To investigate the mechanisms by which these stereocenters are set, several high-resolution structures of the ketoreductase (KR) domain from the second module of the amphotericin modular polyketide synthase (PKS) were solved. This first structural analysis of an A-type KR helps reveal how these KRs direct polyketide intermediates into their active sites from the side opposite that used by B-type KRs, resulting in a beta-hydroxyl group of opposite stereochemistry. A comparison of structures obtained in the absence and presence of ligands reveals an induced fit mechanism that is important for catalysis. Activity assays of mutants of KRs from the first and second modules of the amphotericin PKS reveal the relative contributions of several active site residues toward catalysis and stereocontrol. Together, these results highlight the possibility of region-specific modification of polyketides through active site engineering of KRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.