Abstract

Phosphoglucose isomerase (PGI) with a novel lysyl aminopeptidase (LysAP) activity was recently isolated and partially characterized from the human pathogen, Vibrio vulnificus. This PGI is a heterodimer consisting of 60.8- and 23.4-kDa subunits, which together provide LysAP activity. The present study further characterizes the complex structure and functions of Vibrio PGI and draws parallels with rabbit and human PGI. A Proscan search of Vibrio PGI revealed 194 different structural motifs of which 124 and 127 were also found in rabbit and human PGI, respectively. Vibrio PGI contains motifs for the serine, histidine and aspartic acid active sites of the subtilase family of serine proteases which form a putative catalytic triad consisting of His534 and Ser159 on the 60.8-kDa subunit and Asp53 on the 23.4-kDa subunit. Together, they form one LysAP site for each heterodimer. Each active site motif is overlapped by motifs for EF-hand calcium binding domains. The LysAP activity was inhibited by the addition of ≥10 μM Ca 2+, suggesting that the EF-hand calcium-binding domain may be a natural regulatory region for LysAP activity. In contrast, PGI's isomerase activity was enhanced at Ca 2+ concentrations >100 μM. PGI-LysAP cleaved the amino-terminal lysyl residue from des-Arg 10-kallidin producing des-Arg 9-bradykinin; therefore, Vibrio PGI-LysAP may serve as a virulence factor to enhance Vibrio invasiveness. Together, these data provide a framework to account for PGI's LysAP activity and further demonstrate the structural complexity and functional importance of this molecule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call