Abstract

We present here an integrated analysis of structures and functions of genome-scale metabolic networks of 17 microorganisms. Our structural analyses of these networks revealed that the node degree of each network, represented as a (simplified) reaction network, follows a power-law distribution, and the clustering coefficient of each network has a positive correlation with the corresponding node degree. Together, these properties imply that each network has exactly one large and densely connected subnetwork or core. Further analyses revealed that each network consists of three functionally distinct subnetworks: (i) a core, consisting of a large number of directed reaction cycles of enzymes for interconversions among intermediate metabolites; (ii) a catabolic module, with a largely layered structure consisting of mostly catabolic enzymes; (iii) an anabolic module with a similar structure consisting of virtually all anabolic genes; and (iv) the three subnetworks cover on average ∼56, ∼31 and ∼13% of a network's nodes across the 17 networks, respectively. Functional analyses suggest: (1) cellular metabolic fluxes generally go from the catabolic module to the core for substantial interconversions, then the flux directions to anabolic module appear to be determined by input nutrient levels as well as a set of precursors needed for macromolecule syntheses; and (2) enzymes in each subnetwork have characteristic ranges of kinetic parameters, suggesting optimized metabolic and regulatory relationships among the three subnetworks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.