Abstract

BackgroundHeart failure (HF) is the leading cause of death in western countries. Cardiac dysfunction is accompanied by skeletal alterations resulting in muscle weakness and fatigue. Exercise is an accepted interventional approach correcting cardiac and skeletal dysfunction, thereby improving mortality, re-hospitalization and quality of life. Animal models are used to characterize underpinning mechanisms. Transverse aortic constriction (TAC) results in cardiac pressure overload and finally HF. Whether exercise training improves cardiac remodeling and peripheral cachexia in the TAC mouse model was not analyzed yet. In this study, 2 weeks post TAC animals were randomized into two groups either performing a moderate exercise program (five times per week at 60% VO2 max for 40 min for a total of 8 weeks) or staying sedentary.ResultsIn both TAC groups HF characteristics reduced ejection fraction (− 15% compared to sham, p < 0.001), cardiac remodeling (+ 22.5% cardiomyocyte cross sectional area compared to sham; p < 0.001) and coronary artery congestion (+ 34% diameter compared to sham; p = 0.008) were observed. Unexpectedly, peripheral cachexia was not detected. Furthermore, compared to sedentary group animals from the exercise group showed aggravated HF symptoms [heart area + 9% (p = 0.026), heart circumference + 7% (p = 0.002), right ventricular wall thickness − 30% (p = 0.003)] while muscle parameters were unchanged [Musculus soleus fiber diameter (p = 0.55), Musculus extensor digitorum longus contraction force (p = 0.90)].ConclusionThe severe TAC model is inappropriate to study moderate exercise effects in HF with respect to cardiac and skeletal muscle improvements. Further, the phenotype induced by different TAC procedures should be well documented and taken into account when planning experiments.

Highlights

  • 64.3 million people worldwide suffer from heart failure (HF)

  • The velocity in the left common carotid artery (LCCA) decreased after Transverse aortic constriction (TAC) (p < 0.001), whereas the right common carotid artery (RCCA) velocity only numerically increased after TAC compared to sham-operated animals (p = 0.098)

  • Ten weeks post-surgery body weights (BW) and tibial length (TL) in Transverse aortic constriction combined in sedentary mice (TACSED) and Transverse aortic constriction combined with exercise (TACEX) were comparable to sham

Read more

Summary

Introduction

64.3 million people worldwide suffer from heart failure (HF). Exercise-based cardiac training is known to effectively reduce total and cardiovascular mortality as well as hospital admission [12]. Heart failure (HF) is the leading cause of death in western countries. Cardiac dysfunction is accompanied by skeletal alterations resulting in muscle weakness and fatigue. Exercise is an accepted interventional approach correcting cardiac and skeletal dysfunction, thereby improving mortality, re-hospitalization and quality of life. Whether exercise training improves cardiac remodeling and peripheral cachexia in the TAC mouse model was not analyzed yet. 2 weeks post TAC animals were randomized into two groups either performing a moderate exercise program (five times per week at 60% ­VO2 max for 40 min for a total of 8 weeks) or staying sedentary

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call