Abstract

A series of iron-substituted tin dioxide ceramics with composition Snx−1FexO2 was synthesized using a conventional solid-state method in order to investigate its detailed structural and dielectric properties. Samples formed in the tetragonal structure with grain sizes of around 88–48 nm. Reduction in grain size was found because of the suppression in the grain growth with Fe addition. From FTIR analysis, a broad peak was centered on 650 cm−1 due to Sn–O vibration. Many Raman-active phonon modes observed for as prepared samples. The Fe substitution in SnO2 essentially changes the position of modes, where all the modes shifted to a lower wave number. For all the samples, frequency-dependent dielectric and AC conductivity measurements collected at room temperature and in the frequency range from 75 kHz to 10 MHz. In this frequency range, large dielectric dispersion was noted. According to our analysis of electrical properties of the samples under study, it is found that the conduction mechanism in these materials is based only on a small polaron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.