Abstract
AbstractThe identification of bat colonies is essential to conserve and manage these globally threatened mammals. Caves offer potential roosting locations (hibernacula) to hibernating bat species; however, identifying regions where bat-occupied caves exist can be time-consuming. In Texas, caves are often on privately owned land, creating difficulties for accessing and managing potential hibernacula. The tricolored bat (Perimyotis subflavus), a species susceptible to white-nose syndrome, hibernates in caves in the winter in Texas. We sought to identify and quantify site-specific structural and environmental features that influence the presence and abundance of overwintering tricolored bats. We surveyed caves for bats and recorded environmental and structural features of 116 caves January–February 2016, December–February 2016–2017, January–February 2018, and December–February 2018–2019. We used a zero-inflated Poisson regression to identify which features best explained the presence and abundance of tricolored bats. We found that bat presence increased as cave length decreased, and as Normalized Difference Vegetation Index (NDVI) and external vapor pressure deficit increased. Bat abundance increased as number of portals, cave length, NDVI, and external temperature increased. Combining surface data with subsurface features can assist with identifying specific karst regions and known caves within those regions for survey and management efforts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.