Abstract

The α-Fe2O3-MoS2 nanocomposite materials were synthesized using sol-gel technique and investigated by using scanning electron microscopy (SEM), FTIR, X-ray diffraction, UV–vis and Raman analyses. In this study, we used the conducting polymer electrode named polyhexylthiophene (RRPHTh) with nanodiamond (ND) nanomaterials abbreviated as “RRPHTh + ND”. The photocurrent, “electrode” & the “electrolyte” interface of “α-Fe2O3-MoS2″ and ”RRPHTh + ND“ nanocomposite films were studied using the electrochemical method. The developed MoS2-α-Fe2O-RRPHTh + ND nanocomposite films showed ∼ 3 times higher current–density and energy conversion efficiency as compared to the parent “electrode” in an electrolyte of 1 M of NaOH in “photoelectrochemical (PEC) cell”. Furthermore, improved hydrogen release was observed for the Fe2O3-MoS2 and ”RRPHTh + ND“ nanomaterials-based electrodes when compared to aluminum doped Fe2O3, Fe2O3, and MoS2 doped-Fe2O3 films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.