Abstract

The monoacylglycerol lipase (MAGL) regulates 2-arachidonoyl glycerol (2-AG) level in the endocannabinoid system (ECS), which is implicated in a number of severe diseases such as cancer and Alzheimer’s disease. However, most existing MAGL inhibitors also show additional inhibitory effects on fatty acid amide hydrolase (FAAH), another member of the ECS that degrades the 2-AG analog N-arachidonoyl ethanolamine. Understanding of molecular mechanism and biological implication underlying the specific interactions in MAGL–ligand recognition is thus fundamentally important for the rational design of selective MAGL inhibitors. In the current study, the structural basis and energetic property regarding the binding of several MAGL inhibitors as well as its substrate 2-AG to both the MAGL and FAAH are investigated systematically by integrating molecular docking, quantum mechanics/molecular mechanics analysis, and Poisson–Boltzmann/surface area solvent model. In addition, a novel quantitative structure–selectivity relationship method is proposed to help in the explanation and prediction of inhibitor selectivity between MAGL and FAAH. It is suggested that the selectivity is primarily determined by the size, topology, and property of the rear moiety of inhibitor compounds; a bulky, bifurcated rear is the prerequisite for a inhibitor to have high selectivity for MAGL over FAAH, whereas those dual-type MAGL–FAAH inhibitors should possess a small, rear moiety—the ideal choice is a single aromatic branch occupying this position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.