Abstract

Many hairpin loops are expanded versions of smaller, stable ones. Herein we investigate the extent to which the energetics and structure of d(cGNAg) hairpin loops will tolerate sequence variation. Changing the closing base pair from CG to GC was found to completely eliminate loop-loop interactions; in contrast, expanding the loop at the 3'-end resulted in similar energetics and nonadditivity parameters as the parent loop, suggesting that loop-loop interactions remain intact and highly coupled upon expansion. Together, these data suggest that the CG closing base pair forms an essential platform upon which a stable d(GNA) hairpin loop can fold and that this loop can undergo 3'-expansion with little effect to its structure or energetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.