Abstract

We report the results of scanning electron microscopy (SEM), microprobe analysis (wavelength dispersive and energy dispersive spectroscopies), secondary-ion mass spectroscopy (SIMS), and x-ray diffraction measurements on a series of melt-processed high critical-temperature superconductors. The superconductors were synthesized through a melt reaction between TbBa2Cu3O7−x and nonstoichiometric rare-earth Ba-Cu-O oxides. The melt-processed samples are dense, largely void-free superconductors with critical temperatures in the 90–95 K range. Microprobe and SIMS data show the absence of Tb in surfaces of the interiors of samples which had been fractured to expose the interior regions. Comparative microprobe and SEM data are included for conventionally prepared sintered samples. Comparative x-ray diffraction studies are presented which show that the melt-processed samples studied have diffraction patterns nearly identical to those of sintered (rare earth)Ba2Cu3O7−x samples. In two of the three Y-based melt-processed superconductors studied, the compound stoichiometry from microprobe analysis is Y1Ba2Cu3O7−x. The evidence presented indicates that the TbBa2Cu3O7−x decomposes during the melt reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.