Abstract

The structural and electronic transport properties of polycrystalline p-type CoSb3 with different grain sizes (about 3 and 3×102 μm) were investigated. The magnetic susceptibility was also measured. Samples were characterized by x-ray diffractometry, electron-probe microanalysis, and optical microscope observation. Samples were found to be stoichiometric and homogeneous. The Hall carrier concentration of the samples is of the order of 1018 cm−3 and weakly dependent on the temperature. The temperature dependence of the Hall mobility suggests that the predominant scattering mechanism drastically changes depending on grain size: for large grain size a combination of the neutral impurity scattering and the acoustic phonon scattering, and for small grain size the ionized impurity scattering. The magnetic susceptibility was found to be essentially diamagnetic independently of grain size, and to vary slightly with temperature. The weak temperature dependence of the susceptibility can be explained by taking into account the three contributions of ion cores, conduction electrons, and trace amounts of magnetic impurities. From the analysis of the susceptibility due to conduction electrons, the band gap energy was determined to be about 70–80 meV, consistent with a recent band structure calculation. Although the effects of nonmagnetic impurity phases segregated (Sb, etc.) on the scattering mechanism are not clear, the grain size is one of the key factors determining the transport properties of polycrystalline CoSb3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call