Abstract

The dynamic structural and electronic transformations of Pt/C, Pd@Pt(1 ML)/C, Pd@Pt(2 ML)/C cathode catalysts in polymer electrolyte fuel cells (PEFCs) during the potential-step operating processes between 0.4 and 1.4 VRHE (potential vs RHE) were characterized by in-situ (operando) time-resolved Pt LIII-edge quick-XAFS at 100 ms time-resolution. Potential-dependent surface structures and oxidation states of Pt, Pd@Pt(1 ML) and Pd@Pt(2 ML) nanoparticles on carbon at 0.4 and 1.4 VRHE were also analyzed by in-situ Pt LIII-edge and Pd K-edge quick-XAFS. The Pt, Pd@Pt(1 ML) and Pd@Pt(2 ML) nanoparticle surfaces were restructured and disordered at 1.4 VRHE, which were induced by strong Pt-O bonds as well as alloying effects. The rate constants for the changes of Pt valence, CN(Pt-Pt), CN(Pt-Pd) and CN(Pt-O) (CN: coordination number) in the potential-step operating processes were also determined and discussed in relation to the origin of oxygen reduction reaction (ORR) activities of the Pt/C, Pd@Pt(1 ML)/C and Pd@Pt(2 ML)/C cathode catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call