Abstract

The total energy and electronic structures for type-I (β phase) and type-VIII (α phase) Ba8Ga16Sn30 clathrates under hydrostatic pressure have been investigated using density functional theory (DFT) calculations. It was found that the type-VIII phase is more stable than the type-I one at ambient conditions and that β→α phase transition can not occur under hydrostatic pressure. The band structures show that the type-I and type-VIII Ba8Ga16Sn30 are indirect semiconductors with band gaps of 0.24eV and 0.19eV, respectively. The results suggested that type-I clathrate Ba8Ga16Sn30 has a larger value of the thermoelectric (TE) power than that of type-VIII clathrate. We found that pressure tuning changes the k-point of conduction band minimum (CBM) in the Brillouin zone for β-phase, but it is not the case for α-phase. Furthermore, the results show that the pressure can change the interaction between guest atoms and the host lattice, and consequently results in the decrease of the band gap of β-phase and the increase of the band gap of α-phase, indicating that the pressure effect can play an important role in the magnitude of the TE power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.