Abstract

Lanthanide-doped silicon clusters have been extensively studied in the fields of optoelectronics, magnetism and nanomaterials during the last decade. Herein, systematic structure searches for typical neutral clusters of lanthanide-doped silicon clusters LnSin (n = 5, 10; Ln = Sm, Eu, Yb) have been performed by means of density functional theory coupled with the "stochastic kicking" global search technique. It is found that the Ln atom in LnSin prefers to locate on the surface of Sin to form an exohedral structure, and this exohedral configuration may dominate the nascent structure of LnSin. The spin density and Mulliken population analyses indicate that LnSin clusters possess remarkable magnetic moments (except for YbSin), which are mainly supplied by the Ln 4f electrons (except for Yb). Density of states visually shows the significant spin polarization for open-shell structures of SmSin and EuSin. As for the YbSin (n = 5, 10) system, it has a closed-shell electronic structure with a large HOMO-LUMO gap of 2.72 eV. Bonding analysis, including localized orbital locator and electron density difference, shows that the Si-Si covalent interaction and Sm-Si electrostatic interaction are important for the structural stability of LnSin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call