Abstract

In this paper, we theoretically studied the geometries, stabilities, and the electronic and thermodynamic properties of 4H-cyclopenta[2,1-b,3;4-b']dithiopene S-oxide derivatives (BTO-X, with X = BH(2), SiH(2), S, S=O, or O) using semi-empirical methods, ab initio methods, and density functional theory. The geometries and thermodynamic parameters calculated by PM3 were in good agreement with those calculated with B3LYP/6-31 G*. The band gap calculated using B3LYP/6-31 G* ranged from 3.94 eV (BTO-O) to 3.16 eV (BTO-B). The absorption λ(max) calculated using B3LYP/6-31 G* was shifted to longer wavelengths when X = BH(2), SiH(2), or S=O (due to their electron-withdrawing effects) and to shorter wavelengths for BTO-S and BTO-O as compared to the λ(max) for the thiophene S-oxide (2TO) dimer. The changes in ΔH°, ΔS°, and ΔG° calculated using both semi-empirical and DFT methods were quite similar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call