Abstract
The complexes FeL(2) [L = bidentate Schiff base ligands obtained from (R)-(+)-α-phenylethanamine and 4-substituted salicylaldehydes, substituent R = H, (t)Bu, NO(2), OMe, CN, OH] react with ditopic proligands 1,4-pyrazine (pz) or 4,4'-bipyridine (bpy), to give a family of optically pure Fe(II) polymeric chain complexes of formula {FeL(2)(μ-pz)}(∞) and {FeL(2)(μ-bpy)}(∞). Crystallographic studies show that a range of structures are formed including unidirectional and bidirectional linear polymers and canted zigzag chains. Interchain interactions via π-contacts and hydrogen bonding are also observed. SQuID magnetometry studies on all of the complexes reveal antiferromagnetic interactions, the magnitudes of which are rationalized on the basis of substituent electronic properties and bridging ligand identity. For complexes with bridging pz, the antiferromangnetic interaction is enhanced by electron-releasing substituents on the Fe units, and this is accompanied by a contraction in the intrachain distance. For complexes bridged with the longer bpy the intrachain antiferromagnetic couplings are much weaker as a result of the longer intrachain distance. The magnetic data for this series of chain complexes follow a Bonner-Fisher 1D chain model, alongside a zero field splitting (ZFS) model for Fe(II) (S = 2) as appropriate. The intrachain antiferromagnetic coupling J values, g-factors, and the axial ZFS parameter D were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.