Abstract
Copper(I) complexes with tripodal nitrogen-containing neutral ligands such as tris(3,5-diisopropyl-1-pyrazolyl)methane (L1') and tris(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)methane (L3'), and with corresponding anionic ligands such as hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (L1-) and hydrotris(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)borate (L3-) were synthesized and structurally characterized. Copper(I) complexes [Cu(L1')Cl] (1), [Cu(L1')(OClO3)] (2), [Cu(L1')(NCMe)](PF6) (3a), [Cu(L1')(NCMe)](ClO4) (3b), [Cu(L1')(CO)](PF6) (4a), and [Cu(L1')(CO)](ClO4) (4b) were prepared using the ligand L1'. Copper(I) complexes [Cu(L3')Cl] (5) and [Cu(L3')(NCMe)](PF6) (6) with the ligand L3' were also synthesized. Copper(I) complexes [Cu(L1)(NCMe)] (7) and [Cu(L1)(CO)] (8) were prepared using the anionic ligand L1-. Finally, copper(I) complexes with anionic ligand L3- and acetonitrile (9) and carbon monoxide (10) were synthesized. The complexes obtained were fully characterized by IR, far-IR, 1H NMR, and 13C NMR spectroscopy. The structures of both ligands, L1' and L3', and of complexes 1, 2, 3a, 3b, 4a, 4b, 5, 6, 7, and 10 were determined by X-ray crystallography. The effects of the differences in (a) the fourth ligand and the counteranion, (b) the steric hindrance at the third position of the pyrazolyl rings, and most importantly, (c) the charge of the N3 type ligands, on the structures, spectroscopic properties, and reactivities of the copper(I) complexes are discussed. The observed differences in the reactivities toward O2 of the copper(I) acetonitrile complexes are traced back to differences in the oxidation potentials determined by cyclic voltammetry. A special focus is set on the carbonyl complexes, where the 13C NMR and vibrational data are presented. Density functional theory (DFT) calculations are used to shed light on the differences in CO bonding in the compounds with neutral and anionic N3 ligands. In correlation with the vibrational and electrochemical data of these complexes, it is demonstrated that the C-O stretching vibration is a sensitive probe for the "electron richness" of copper(I) in these compounds.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.