Abstract

Ab initio calculations were performed to investigate the structural and electronic properties of bulk CdTe using various exchange–correlation (XC) functionals available. Among the selected XC functionals include the local density approximation (LDA), generalized gradient approximation (GGA), meta-generalized gradient approximation (MGGA) (using the linear combination of atomic orbitals basis scheme) and Heyd–Scuseria–Ernzerhof-06 (HSE06) (using the plane-wave basis scheme). Further computational studies were performed based on the local density approximation-1/2 (LDA-1/2) and generalized gradient approximation-1/2 (GGA-1/2) self-energy correction schemes to verify their effect on the CdTe band gap in comparison to the other traditional XC functionals. The lattice parameter values obtained using different XC functionals (LDA, GGA and MGGA) were well in agreement with experimental value, with LDA predicting 6.548 A. This is 1.02% greater than the experimental value of 6.482 A. The electronic structure of CdTe was calculated for the fixed 6.482 A lattice parameter of bulk CdTe and resulted in a band gap ranging between 0.68 and 1.56 eV for LDA, GGA, MGGA, and HSE06. The band gap values predicted by the LDA-1/2 and GGA-1/2 corrections were 1.47 eV and 1.50 eV, respectively, and are found to be in good agreement with experimental values. The influence of XC functionals and semi-empirical correction schemes are expected to have important implications on the prediction and understanding of bulk CdTe thin-films found in photovoltaic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call