Abstract

Copper nanoparticles were prepared by chemical reduction of copper nitrate by sodium borohydride as a reducing agent in de-ionized water/acetonitrile mixture. The prepared nanoparticles were incorporated in poly(vinyl alcohol) (PVA) by physical dispersion method to obtain PVA/copper nanocomposites. Various compositions of nanocomposites were obtained by changing the w/w ratio of nanoparticles with the polymeric material. The prepared nanocomposites cast into films of uniform thickness. The composite films were subjected to the electrical, mechanical and surface morphology characterization. AC Impedance was figured out by AC Impedance analyser. The results illustrated that copper nanoparticles impart electrical conductivity in poly(vinyl alcohol). Moreover, electrical conductivity of the composites exhibited an increase with an increase of w/w% of the copper nanoparticles in poly(vinyl alcohol). Tensile properties were studied in terms of tensile strength, elongation at break and Young’s modulus. Elongation at break and Young’s modulus values demonstrated an increase while tensile strength displayed a decrease at higher concentration of the copper nanoparticles in the composites. AFM results unfolded the surface morphology of the composites illustrating a smooth surface with evenly distributed copper nanoparticles in the polymer matrix. The dimensions of the uneven surface is attributed to the copper nanoparticles were estimated to be of a range less than 100 nm. The prepared nanocomposites are suggested as potential candidates in charge storing devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.