Abstract

The morphological and chemical modifications following reduction in hydrogen at 873K of stannic oxide deposited on ceria particles were studied in order to gain insights into the nature of Ce-Sn interaction under reducing atmosphere, simulating the operating conditions in a solid oxide fuel cell. It is shown that the co-presence of the two materials improves the power output of fuel cells up to a factor of 10 when compared to ceria alone. Through high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and in-situ X-ray diffraction (XRD) data we show the formation of a novel system made up of nanoparticles composed of a molten Sn0 core capped by an amorphous tin oxide layer. SnOx shell acts as a binding agent which stabilizes Sn0 nanoparticles on ceria even after reductive treatment at temperatures well above the melting point of tin. This occurs through an interfacial redox communication between ceria and tin, likely involving a transfer of oxygen from ceria to the metal and electrons from metal to ceria. It is highlighted how the Sn@SnOx nanostructures and their spontaneous formation could be used as a model for the development of catalyst nano-assembly comprising an amorphous metal oxide triple phase boundary, opening the way for a new paradigm in the development of multifunctional catalytic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.