Abstract

We conducted in-situ high-pressure synchrotron x-ray diffraction (XRD) and electrical transport measurements on Dirac-like semimetal PdSn4 in diamond anvil cells with quasi-hydrostatic pressure condition up to 44.5 GPa–52.0 GPa. The XRD data show that the ambient orthorhombic phase (Ccca) is stable with pressures to 44.5 GPa, and the lattice parameters and unit-cell volume decrease monotonously upon compression. The temperature dependence of the resistance exhibits a metallic conduction and follows a Fermi-liquid behavior below 50 K, both of which keep unchanged upon compression to 52.0 GPa. The magnetoresistance curve at 5 K maintains a linear feature in a magnetic field range of 2.5 T–7 T with increasing pressure to 20.0 GPa. Our results may provide pressure-transport constraints on the robustness of the Dirac fermions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.