Abstract

The phosphate KCoCr(PO4)2 and iron-substituted variants KCoCr1-xFex(PO4)2 (x = 0.25, 0.5, and 0.75) were synthesized by a solid-state reaction route, while a high substitution level of Fe was achieved. Their structures were refined using powder X-ray diffraction and indexed in a monoclinic system with a P21/n space group. A 3D framework with six-sided tunnels parallel to the [101] direction was formed in which the K atoms are located. Mössbauer spectroscopy confirms the exclusive presence of octahedral paramagnetic Fe3+ ions, with isomer shifts increasing slightly with x substitution. Electron paramagnetic resonance spectroscopy confirmed the presence of paramagnetic Cr3+ ions. The activation energy, determined by dielectric measurements, shows that the iron-containing samples present higher ionic activity. Relative to the electrochemical activity of K, these materials could be good candidates for positive and/or negative electrode materials for energy storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call