Abstract

New lead-free inter-growth piezoelectric ceramics, Na0.5Bi8.5-xLaxTi7O27 (NBT-BIT-xLa, 0.00≤x≤1.00), were prepared by the conventional solid-state method. Structural and electrical properties of NBT-BIT-xLa were studied. All the NBT-BIT-xLa samples exhibited a single inter-growth structured phase. XRD and Raman spectroscopy revealed a reduced orthorhombicity, which strongly supports the variation of dielectric and ferroelectric properties. Plate-like grains were found to decrease with the increasing x contents. Impedance spectra analysis indicated that oxygen vacancy defects dominated the contributions to the electrical conductivity. The increased activation energies for dc conductivity evidenced the reduction of oxygen vacancy concentration after La substitution, inducing the enhancement in piezoelectric constant (d33) and remanent polarization (2Pr). The studies of thermal depoling indicated that the optimal d33 of NBT-BIT-0.50La ceramics still remained 22 pC/N at 500°C, implying that this ceramics could be potentially applied into high temperature devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.